Ikaros: Building Cognitive Models for Robots

Christian Balkenius, Jan Morén, Birger Johansson and Magohnsson

Abstract— The Ikaros project started in 2001 with the aim easy interface with various types of hardware such as video
of developing an open infrastructure for system-level brah cameras and robots. For example, there are easy interfaces
modeling. The system has developed into a general tool for 4 the various standards for video capture and video files, fo

cognitive modeling as well as robot control. Here we descrid di . I f bot trol th h ¢
the main parts of the Ikaros system and how it has been used to 2U0!0 Processing as weill as for robot control {hrough a se

implement various cognitive systems and to control a number Of drivers for different hardware systems.

of different robots ranging from robot arms and hands to active The goal of the infrastructure specification is to be mini-
vision systems and mobile robots. mally demanding for anyone developing an Ikaros module.
| INTRODUCTION It should be possible to learn to use it in a few minutes

o _ while still providing support for very complex architects:
The goal of the Ikaros project is to develop an open iny, the following sections we describe the different parts of

frastructure for system level modelling of the brain indh@l {he karos system and the choices that have been made when
databases of experimental data, computational models aggsigning the different components.

functional brain data. The infrastructure supports a seasl
transition from a pure modelling and simulation set-up to Il. SYSTEM-LEVEL MODELS

real-time control systems for robots running on one or sver The core concept of system-level modeling is the module
computers in a single or multiple threads. Computationajhich corresponds to a part of a model. A module can have
models are built by connecting individual modules thah number of inputs and outputs and encapsulates a particular
implement a specific brain model or algorithm into largeg|gorithm (Fig. 1). This does not mean that cognitive models
systems. built using lkaros must adhere to a modular view of cogni-

The system makes heavy use of the emerging standaligish. Instead, a system-level approach to cognitive madeli
for Internet based information such as XML and makes alicknowledges that different cognitive components intdrac
part of the system accessible through an open web-basg@ny ways and it is one of the strengths of the approach that
interface. We believe that this project has the potential t explicitly shows these interactions as connections betw
radically change the way system level modeling of the braigodules. A module in Ikaros is thus not a statement about
is performed in the future by defining standard benchmarkgcality or impenetrability, it is only an acknowledgement
for brain models and substantially increase the gain fromhat a system is constructed from several components, and
cooperative research between groups. these components or modules have different properties.

A system like lkaros can not operate in a vaccuum. |n general, to design a system-level model it is necessary
Instead, the goal is to allow Ikaros to easily work with ago answer four questions:
many external sources of information as possible. There is\what are the components of the systefftfis entails
simply too many types of information that need to be used bynswering at what level the model should be described.
the system and without taking an inclusive approach, the tagre the components individual neurons or brain regions,
of adapting information and models becomes too great. Thg are they some form of abstract description of functional
only viable solution is to integrate Ikaros with other sianil components without direct relation to the brain? There is no
endeavors whenever possible. This inclusive approachsneajingle correct answer to these questions; it depends on the
that we want to offer a large corpus of experimental datmodel being implemented.
from cognitive experiments for use with Ikaros, but we also \what are the relations between the componemse
strive to make it easy to adapt other experimental data fgfey parallel systems with little interaction, or are they
use within the system. tightly coupled? Are they all at the same descriptive level

Inclusivness also means making development a transpargtare some components subparts of others? Is the system
and straightforward process. As part of the standard infrageterogeneous or hierarchical?

tructure, Ikaros already contains a sizable number of stahd \which function is performed by each componehit®w

modules that are useful in a broad range of cognitive modelgan the functions be described as mathematical functions or

The infrastructure also contain modules that allow for ags algorithms? Ikaros supports systems built from standard
C. Balkenius, B. Johansson and M. Johnsson are with Lundedsty modules that implement elementary mathematical functions

Cognitive Science, Kungshuset, Lundagard, SE-222 22 LBwleden. as well as modules that are hand coded from scratch.

christian. bal keni us@ucs.lu.se What information is transmitted between the components
Jan Morén is with Knowledge Creating Communication Regde&enter, dh .. ded7h . f di is th

NICT, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 61288, Japan an Ow Is It codedThe question of coding Is the most

j an. moren@nmai | . com important for a system-level model and the only one where

Input Output <modul e
MOdUIe class = "Myd ass"

nane = " M/Mdul e"

FIG. 1: A module with one input and one output. al pha = "3"
beta = "0.1"
/>

A connection between two modules is specified in a
connection element:

<connecti on

sour cenodul e = "Thal anus”
source = "Qutput"”
FiG. 2: A small system with three modules A, B, C with connections target r‘rEdu: © = " Amygdal a
between them. target = nput

/>

. . . Finally, it is possible to group modules and connection in

Ikaros put§ any major constraints on the pOSSIb!e models. { larger structures. The following example corresponds to
Ikaros, all inputs and outputs are coded as matrices of floaiﬁe structure shown in Fig. 3 and Fig. 4. It defines a group
This limits the possible models in several ways that mak br new module) called X with an input x and an output y.
it more likely that different models can be interconnecte he group consists of three modules A, B and C which ha\}e
Although Ikaros puts no constraints on the interpretation 0multiple connections between them Th’e input x is connected
the matrices, this type of structure is best used for codi the input a of module A and thé output y receives data
in terms of numerical values, either directly or using some output d of module B.
form of distributed code. - _ Groups can also be given inputs and outputs to let them

In Ikaros, the components are specified using an XMLf nction as new modules or be read from external files and
based language which also describes the relation between used as call descriptions. A specification of these featur
components. The function in each component is describ@T however beyond the current description.
either using standard modules or by writing new simulation
code. The transfer of information between components is IV. THE SIMULATION SYSTEM

implicit in the coding of the different modules. Currently, the main part of Ikaros is the simulation system
lll. DESCRIBING MODELS which consists of a platform independent simulation kernel

. .] _ together with a large set of modules that implements differe
Fig. 1 shows a simple module. This module has a singlg,nctions and models.

input through which it receives input data and a single outpu) o
through which it sends its output data. The input is read i~ Design Criteria
discrete time and the module also generates new output afThere were a number of important considerations in the
discrete intervals. choice of the simulation structure. The first was that it $tiou
Modules can be connected together to form systenise platform independent. There are two reasons for this. The
(Fig. 2). This network of modules is what makes up a moddirst is that it was expected that the system would be required
in lkaros. Here, the model consists of three modules A, B run on different architectures. The second, and more
and C. Module A has one input (a) and two outputs (b antinportant reason was that the we did not want to depend
e). Module B has two inputs (c and f) and a single outpubn one particular compiler or operating system. It is well
(d). Finally, module C has one input (g) and one output (hknown that code is only portable once it has been ported. By
The complete model has the single input a and the sing#multaneously developing for several operating systetns,
output d. would be almost guaranteed that Ikaros would be reasonably
One of the greatest strengths of Ikaros is its ability to harportable. We have consequently strived to comply with the
dle large complicated cognitive models consisting of mangelevant standards as much as possible. These includes ANSI
interacting subcomponents. To allow the specification ohsu C++, POSIX and BSD sockets. A related choice was to
architectures, an XML-based description language has bedapend on as few external libraries as possible. Although th
developed [6]. This language has three main componentsirrent version of Ikaros uses external libraries for stgke
the module, the group and the connection. timing, threads and mathematical operations, it can séll b
A module element describes an instance of a particulaun in a minimal version that only uses a small set of standard
Ikaros module and sets its parameters. These paramet€rst+ libraries.
are handled to the constructor function of the module as The second main design choice was to use a discrete-time
described below. The only two required attributes eless model for simulation. Although this is the normal operation
and namethat decides what code the module will run andor most neural network simulators, there are some notable
how it will be referred. exception. However, to allow the easy integration of défer

FiG. 3: A group consisting of three modules. The group is externalysidered as a module named X with one input x and one output
y. These inputs and outputs are internally connected totiapof module A and output d of module B.

<group name = "X"'>
<i nput name = "x" targetnodule = "A" target = "a" />
<out put nane = "y" sourcenodule = "B" target = "d" />
<nmodul e name="A" ... />
<rmodul e nane="B" ... />
<modul e nane="C" ... />

"b" targetnodul e "B" target= "c" />
"e" targetnodul e "C' target= "g"/>
"h" targetnodule = "B" target= "f" />

<connection sourcenpdul e= "A" source

<connection sourcenodul e= "A" source

<connection sourcenodul e= "C' source
</ gr oup>

FiG. 4: Example of a group of modules with its own input and outpue giaphical representation of this system is shown in Fig. 3

types of algorithms, it was decided that a discrete tim&his design decision has made it easy to incorporate code
simulator would be most useful. It is hard to imagine hownot specifically written for Ikaros as long as it is reasogabl
many algorithms could be adapted to a continuous timelean. For example, the main function of a trivial module
framework. In most cases, this choice does not limit théhat would only copy its input to its output may look like
possible models that can be designed since it only relatdss:

to the times when different modules communicate and not)

their internal structure. MyModul e: : Ti ck()

Another consideration was that to make the system attrac- {
tive it should be as easy as possible to use many different
types of programming styles. As a consequence, we decided
to only use standard C data structures such as integers and
matrices of floats. The use of doubles was decided againstThe point here is that this code looks like any C++

on grounds of efficiency and the lack of support for doublesode and there is nothing Ikaros specific with it. When this

for(int i=0; i<size; i++)
output[i] = input[i];

in most vector co-processors. function is called, the array input will contain the inputthe
module and after execution, lkaros takes care of the result
B. Module Interface in the array output.

All inputs and output of modules are represented as arrayslt was also considered fundamental that simulations using
or matrices of floats and the sizes of these matrices aligaros would not be slower than simulations made in a
represented by integers. The sizes of all data structurdedicated system. Conceptually, all modules in lkaros run
used by lkaros are calculated during startup and can not bencurrently and synchronously. This mode of operation was
changed during execution. This restriction only applies foselected because it is the only possibility when it is neargss
the data moved between modules; for internal data used timat execution order is well defined, which is the case for
modules there are no restrictions at all. The actual code innaany algorithms. Because of the synchronous operation,
module can use any coding style as long as the inputs atftere will be a delay of exactly one time step (or tick)
outputs are in the right format - indeed, it is entirely feédsi between the production of an output from a module and the
to embed or interface with an interpreter in a module fotime when it can be used by another module. In most cases,
a completely different language transparent to Ikarodfitsethis extra copying step is necessary anyway and does not
Since Ikaros itself is written in C++, either C like or C++ usually incur any extra execution cost.
like coding styles can be used as long at it is wrapped in a Since this overhead is not always desired however, version
C++ class. Although the inputs and outputs are part of th@8.0 introduced zero-delay connection between modules.
Ikaros kernel data structures, the modules themselves ddésing this type of connections, there is no delay at all
not know about this. Instead, they can magically assume thia¢tween the production of an output and its use by other
the input matrices are always filled with the required datanodules. Instead, the second module refers directly to the

memory where the first module has produced its output. To
make the result well defined, zero-delay connections ange onl
allowed within subsets of the complete module networks
that form directed acyclical graphs. That this condition is
fulfilled is checked during start-up when all modules are
sorted according to their position in the graph. With zero-
delay connections, the input to the system can in principle b
processed in a single time step regardless of the number of
modules that the information passes on its way to the outputic. 6: The order of execution of three modules. The numbers on
In this case, the execution overhead is negligible. the connections indicate the delay in the connections. Tinebers
The kernel also includes a small set of libraries that hide® the modules indicate the order in which they should bewgec
system specific code for sockets, timing, threads and serid® W shaded areas correspond to two thread groups.
communication. In addition there are utility libraries for
memory management, XML processing and mathematical

functions. In most cases, the programmers need not kn%WFortr?xzmptl;la, the Ol;tg]m .frorrl the mOdULE could be set lto
about any of these libraries to use Ikaros. ave the gouble siz€ ot the input or some other more complex

relation. Since there can be a number of cyclical relations
C. Kernel Start-Up between different modules, the calculation of output sizes
Qerformed iteratively until all sizes have been establislie
mere are cyclical dependencies, these will be found during

The kernel is responsible for the creation of the networ
and its modules at startup, the scheduling during system.)
execution, and the propagation of data between modulélg.'S stage and an error message will be produced.

Fig. 5 shows the main component of the running lkaros &) Sorting the ModulesAll modules are sorted in two
system. ways (Fig. 6). The modules are partitioned into different

Detailed knowledge of the kernel operation is not at a/fets that each contains a directed acyclical graphs (DAG) of

necessary or even recommended for use of Ikaros. Knowirqﬁ%‘jd‘“es with zero-delay connections between them and only
why and in what order things are started do however make layed connectlons to any other quules. Each of these sets
easier to understand the design decisions made. This sectf" P€ run in a separate thread and is called a thread group. A
can be skimmed lightly without any loss of understanding loPelogical sortis performed on the groups according ta the
The most important aspect of the kernel is the creatioRositions in the DAG which defines a partial order relation on
modules. For modules that have zero-delay connections
between them, this order is used to make sure that a module
that produces data that another module will use is always

sequence that occurs when the system starts up. This happ
in six steps:

a) Class RegistrationWhen the Ikaros program starts,
it first registers all code for the modules contained in th&x€cuted before that other module.
system. This initialization step builds a data structurat th f) Module Initialization: When all modules have been

contains pointers to a creator function for each module tyge®nnected, the initialization phase starts. At this stage,
and binds it to a module class name. size of the input that each module will receive is known and

b) Module Creation: When the initialization has fin- each module is allowed to create any additional storage that
ished, the kernel reads the supplied control file in xMLJt needs and initialize variables. To do this, the kernelscal

format, which specifies the modules to activate and give'%m initialization function for each of the created modules.

them instance names and other parameters. One instance_of
each module specified is created for every occurrence of that
module in the control file. A module can thus have multiple The scheduling mechanism of the lkaros kernel is re-
instantiations with different parameters. When each msdubponsible for calling the code of each module instance once
is created, it registers its inputs and outputs in the ketmel during each discrete time step (or tick).
allow them to be connected in the next step. At this stage, In the simplest case, the scheduling consists of calling the
the individual modules also gain access to any additionsick function for each module in the order in which they were
parameters set in the control file for that particular modulesorted during initialization. When lkaros runs in threaded

c) Connections:When all modules have been createdmode, each thread group is handled separately in this way. In
the kernel continues to read the control file and make thbreaded mode, there is no communication between modules
specified connections between modules. in different DAGs during this time which greatly simplifies

d) Size Calculations:Most input and outputs have the operation of the kernel.
dynamical sizes that are set during start-up. For exanmiple, i In a second step, the data propagation function is called
the input of a module is connected to the output of anothéo copy data from outputs to the inputs of the modules.
module that produces a 4x4 matrix, the input of the secoridata propagation is done simultaneously for all modules.
module will adapt to this and set the size of its output3he output for each module is copied to the input to which
accordingly. There can be any relation between the size itfis connected. The propagation process is also respensibl
an input and the size of an output. for the simple data translation that is made by the system and

Kernel Operation

Web
Browser

XHTML
SVG ITCP/IP I JSON
. Data
JavaScript

WebUI

Process 2

Process 1

>

Kernel TCP/IP

Thread 1

Thread 2

FiG. 5: The Ikaros kernel. The kernel starts a number of threads evagrumber of modules (A-G) are executed. The modules cocatesi
through a set of circular buffers that correspond to outpfutsn the modules. The kernel can also communicate with dkiaeos processes
running on the same or on a different processor or computeaiddition, the kernel communicates with an optional graphuser interface
client running in a web browser.

concatenation in the case when several outputs are condnectelO Modules:There is a set of modules that read data from
to the same input. In addition, this stage delays the data dlifferent file formats, for example text data or differentdize
connections when this is set in the connection. files. Other modules are used to communicate with external
Finally, the kernel handles timing when Ikaros runs indevices such as cameras or robots.
real-time mode. In this case, the kernel makes sure that theUtility Modules: To simplify the design of models, there
execution of the tick did not take longer than allowed andre also a large number of utility modules for simple
waits for the appropriate moment to start the next tick. mathematical operations. This includes vector and matrix
E. Anatomy of a Module operations and standard mathematical functions. Othigyuti
. :) . modules are used to collect data or statistics or to control a
Every module in lkaros |mplements_f|ve func_'uons. For aexperiment. A few utility modules are used to generate input
module named MyModule, the following functions are beSuch as the function generator.

defined and called in the following order: . .
MyModule() The creator function registers all the inputs Image Processing Moduleginother set of modules im

. glement standard image processing functions. There are
and outputs of a module. It also gains access to all parameter . .
o ! modules to transform the colors in an image, modules that
of this instance of the module from the control file.

SetSizes(This optional function is called repeatedly dur-tsrc"?]l:fol:?nige?o'r; dlre:;?f;r\gr? ?m(;r ger:ggssﬁthec: Z?:tté?ls
ing start-up to calculate the sizes of dynamic outputs bas § : PPl ge p g op

on the sizes if the inputs to the module. %ere is a module for convolution, but also modules for spe-

Init() The init function is called after kernel initialization cific operators such as the Sobel operator and parameyricall

: L efined Gabor filters. There are also several modules that
and lets the module gain access to its inputs and outputs

- ' 8e’rforms edge detection. A few vision modules are more
This is also were any internal data structures are allocate d molex and imolements a saliency map or an attention
Tick() The tick function is where the actual work is P b y P

being done by the module. It is called repeatedly durin&Ocusmg mechanism.

the execution of a module and should calculate new OutputsEnwronment Motdutlﬁsfl'o allow S|multz;\t|on fOf ar:j allgentth ¢
based on its inputs (See example in section 3.1). In an environment, theré aré a number of moduies tha

~MyModule()This optional function deletes any mooluleimplements simple environments. The GridWorld module
jmplements a two-dimensional environment consisting of a

specific memory that has been allocated in Init() and pePn_ . : .
forms other clean-up that may be necessary. grid with obstacles together with an agent that can navigate

é'n it while being controlled by other Ikaros modules. There

This template is named MyModule and a new module cals also a variant where the simulated robot can move con-

easily be added to lkaros by simply renaming the templatg.nuous!y over the grid. Thi§ module_ also simulates a 2D
visual field using a ray casting algorithm. Another module

V. STANDARD MODULES simulates an arm with arbitrary geometry.
Ikaros contains a large number of standard modules. TheseOther Modules: The standard modules also include a
can be divided into a number of categories. few neural network algorithms and some general learning

algorithms. extended with new graphical objects by writing JavaScript
code for the drawing of the new object.
VI. REAL-TIME EXECUTION One limitation of this solution is that it is not as fast

When Ikaros is used to control robots it is necessary thas using a dedicated program for the client. However, we
the precise timing of input and output can be controlled. Téelt that this solution has several advantages. First ofitall
accomplish this the kernel has functions to time the exenuti means the whole system becomes totally platform indepen-
of each tick. When Ikaros starts up it sets it time-base to thgent. But also, and perhaps more importantly, it enables us
required interval and tries to time the ticks to this timeséaa to transparently monitor and control a running simulation
Itinternally controls that it is able to keep up with the dedi remotely, independent of what system the simulator and the
speed and will report delays in the execution. client is running, and we can do so with a simulation running

Obviously, the accuracy of the timing will depend on theén another room or across two continents with no loss of
underlying operating system. The real-time functionality functionality.
based on POSIX.4 [21], but since Ikaros is currently not run- If fast, concurrent representation is important, the very
ning on real-time operating systems, any other process capen-ended structure of an Ikaros module enables users to
in principle interfere with real-time execution. In praj it simply write a graphical module that includes the toolkit
is possible to get less than 1 ms resolution on the operating other representational system of their choice and displa
systems we have tested. data sent to the module from there. Likewise, a module that

An important factor that contributes to real-time perforteceives user interaction can change the behavior of other
mance is the ability to run Ikaros in multi-threaded modenodules in the system accordingly by defining a "command
[10]. In this mode, the kernel tries to run every module irchannel” that sends data to other modules via the same
a separate thread. When there are zero-delay connectionschanism as ordinary data. lkaros does not care how data
between a set of modules, the kernel will automatically pus interpreted within modules after all.
these in the same thread.

In thread mode, each module can be set to run at different VII. VALIDATING MODELS
time intervals. For example, a slow visual processing medul To automatically validate a model against relevant data,
may run 5 times per second while a faster motor contrdbr example, neurobiological databases, the specificaifon
module can be allowed to run 100 times per second. Tha&a module can include thmodelsattribute. For example, a
feature is very useful for robotic control where some loopsodule that claims to model the amygdala could be describes
need to run at high speed while others are much heavier.in the following way:

VII. A GRAPHICAL USERINTERFACE <nodul e
class = "Myd ass"

To monitor ongoing simulations, lkaros has a graphical
going grap name = "MNModul e"

user interface. Like the modules and connections, this user model s = " Anygdal a"
interface is specified using XML. This XML specification /> 9
is read by the Ikaros kernel which starts up an integrated
web-server which allows standard web browsers to act asThis information could be used to match the graph made
graphical clients. The browser gets a set of JavaScript roup of the modules in an lkaros model to connectivity
tines from Ikaros that are run in the browser that implement$ata found in neurobiological databases. Some first atempt
the graphical user interface [9]. The actual drawing is madewards such as system have been taken [11]. More recently,
using SVG [8]. The choice of JavaScript+SVG was basedle also interfaced the Ikaros validation system with the
on the fact that this would make the system truly platfornCoCoMac database.
independent.
For communication with the sever, the interface uses IX. EXPERIMENT DATABASE
JavaScript Object Notation (JSON). Although we initially In our earlier studies of classical conditioning we have
planned to use XML for this communication, JSON turnedieveloped an extensive database of the design and results of
out to be much simpler to use since it can be natively parsetnditioning experiments. The development of this databas
by JavaScript using the eval function. started in 1996 and now contains approximately 200 differen
Unfortunately, few browsers initially supported SVG andexperiments. The database is stored in a way that allows the
we made the choice to only actively support FireFox. Thexperimental descriptions to be used as input to computer
first version of Ikaros that used this graphical user int&fa simulations of learning by classical conditioning.
was released a few days before the first version of FireFox to Unfortunately, this database was stored in a form that is
include native SVG rendering (version 1.5). Today, severalot easy to access unless the previous simulator developed
other browsers support SVG and JavaScript in the required LUCS is used. It also has the limitation that it only covers
way including Safari and Opera. classical conditioning and not other learning paradignssaA
Currently, lkaros has support for graphical objects sucpart of the Ikaros project, we want to extend the experiment
as bar graphs, different forms of 2D and 3D plots, imageslatabase by adding more experiment types and by translating
grids and vector fields. The graphical client can easily bt#he database to a more accessible format.

In the future, we will add experiment description forthe usefulness of the system. Unlike most other frameworks,
other learning paradigms besides classical conditioihgs Ikaros do not force the user into one theoretical model ar int
includes operant conditioning experiment as well as monasing extensive libraries even though such support is edfer
cognitively oriented experiments. The goal is to cover allhis has made it easy for users of diverse backgrounds to
experiment types that are regularly used with animals amglickly learn to use the system.
humans. We estimate that the final database will include On the other hand, there are certain restrictions thatdimit
approximately 1000 experiments. for what systems Ikaros is useful. Some of these constraints

The entry for each experiment will include all informationcertainly makes lkaros less useful for some systems, in
that is necessary to reproduce the experimental conditionsparticular architectures that mainly relies on symbolio-pr
a simulator or a real experiment. This includes detailed datessing rather than numerical computation. We believe that
of the stimuli used, the apparatus, the exact timing etcillt w for a tool to be useful, it is necessary that it is adapted for
be important to differentiate between the part of the expespecific tasks and this inevitably makes it less useful foeot
iment description that contains the logic of the experimentsks. For Ikaros, it was important that it could be used for
and features such as timing and spatial location that aem oftreal-time processing and for robot control, which makes it
not essential. This will allow modelers to adapt experirmentdifferent from many other framework for more biologically
to their needs in much the same way that an experimebased modeling. We also wanted lkaros to run on almost
developed for one species has to be changed to fit anothany hardware which is the reason behind many of the design
The database will also contain experiment descriptions ichoices.
narrative form and pointers to external databases such adn summary, Ikaros has proven to be a very useful tool for
Medline and BIOSIS when appropriate. building cognitive systems models and for robot control. It

To allow easy access to the experiment database, it willas evolved into a mature and stable system and has currently
be coded in the XML format that is widely used for on-been adopted by several research groups within the cognitiv
line data. The choice of XML for the database is naturadciences.
since it allows for an evolving and continually expanding
database structure. It can also be used to mediate thedransf XI. ACKNOWLEDGEMENTS

of information from other already existing databases. Apar \we would like to thank all the people that have tested
from translating the already existing database to this &rm 54 commented on the system during its development, in

we will also develop tools that can be used to encode ang,ticylar Takashi Omori, Hakan Jonson, Kolbjorn Gripne
visualize experiments through a web-based interface. Lars Kopp, Chris Prince, Martin Butz, Stefan Karlsson,

X. DISCUSSION Stefan Winberg, Anders Karlstrom, Mikael Asker, Vin
. _Thorsteinsdottir, Sigurbirna Haflidadottir, Kiril Kiryax, Gi-
During the last few years, Ikaros has been used to build ,gjieimo Calvi. More information about Ikaros can be

a number of cognitive models and to control many differendy .+ "ot the project web site: http:/Awww.ikaros-projeat
robots. This has to date resulted in over 40 scientific pub- ' ' ' ’

lications. For example, for cognitive modeling, it has been REFERENCES
used in several models of cognitive development and the

: : ‘i [1] C. Balkenius. Cognitive processes in contextual cuelng-. Schmal-
mOde“ng developmental disorders [3]’ [7]’ plast|C|ty et hofer, R. M. Young, and G. Katz, editolBroceedings of the European

somatosensory cortex [14] and to study different forms of cognitive Science Conference 20@&ges 43-47. Lawrence Erlbaum
learning [5] and emotion [20], [4]. A lot of the work on Associates, Mahwah, NJ, 2003.

; ; F [2] C. Balkenius, K.Astrom, and A. P. Eriksson. Learning in visual
Ikaros has involved visual processing, for example models o attention. InICPR '04 workshop on learning for adaptable visual

visual contour processing [19] and models of visual attenti systems (LAVSP004.
[1]. [2]. [3] C. Balkenius and P. Bjdrne. Toward a robot model of attendeficit

; hyperactivity disorder (adhd). In C. Balkenius, J. Zlatev,Kozima,
We have used lkaros to control @ number of different K. Dautenhahn, and C. Breazeal, editoPFspceedings of the First

robotic hands built at Lund University Cognitive Science |ntemational Workshop on Epigenetic Robotics: Modelinggfitive
to investigate haptic perception [15], [16], [17], [18]. &h Development in Robotic Systemelume 85 of Lund University

; ; Cognitive Studies2001.
hands have different sensors and different degrees ofdreed [4] C. Balkenius and J. Morén. Emotional learning: A congianal

and are all controlled by.different neural network based ~ model of the amygdala.Cybernetics and System82(6):611-636,
architectures. In another line of research, we have looked 2000.

ini ; ; ; ; i ; i [5] C. Balkenius and S. Winberg. Cognitive modeling with tt
at anticipation and navigation in mobile robots includihg t sensitive reinforcement learning. Proceedings of AILS 'Q4Dept.

e-puck and the_BoeBot [12], [13]. Here, Ikaros is us_ed to iM- of Computer Science, Lund, 2004.
plement very different models that are more classical in thg6] Christian Balkenius, Birger Johansson, and Jan Moretkaros

; ; ; Control File Specificationhttp://www.ikaros-project.org/2007/IKC10-
sense that they use potential fields or planning approaches. 20070601/, 2007,

The approach in Ikaros to be minimally demanding re-i7j p. Bjsme and C. Balkenius. A model of attentional impaents in
garding the types of architectures that can be built and the autism: First steps toward a computational thed@pgnitive Systems
types of programming styles that can be used has proved tg Research6(3):193-204, 2005. .

. . 8] J. David EisenbergSVG EssentialsO’Reilly, 2002.
be very successful. It is also clear that many of the des'g&[@] David Flanagan. JavaScript: the definitive guide O'Reilly, fourth
choices made initially were sound and has contributed to edition, 2002.

[10]

(11]

[12]

[13]

[14]

[15]

Bill O. Gallmeister.
O'Reilly, 1995.

M. Gustafsson and C. Balkenius. Using semantic web niecles
for validation of cognitive models against neuroscientifiata. In
Proceedings of AILS '04Dept. of Computer Science, Lund, 2004.
B. Johansson. Elastic template matching in outdooirenments.
Master’s thesis, Lund Univeristy Cognitive Science, Lug@p4.

B. Johansson and C. Balkenius. An experimental studynti€ipation
in simple robot navigation. In M. et al Butz, editofnticipatory
Behavior in Adaptive Learning Systems: From Brains to liiisl
and Social BehaviorSpringer, 2007.

M. Johnsson. Cortical plasticity: A model of somatoseny cortex.
Master’s thesis, Lund Univeristy Cognitive Science, 2004.

M. Johnsson and C. Balkenius. Experiments with aréfidiaptic
perception in a robotic handournal of Intelligent and Fuzzy Systems

POSIX.4—programming for the real world

[16]
[17]

(18]

[19]

[20]

[21]

17(4):377-385, 2006.

M. Johnsson and C. Balkenius.
Report 9, LUCS Minor, 2006.

M. Johnsson and C. Balkenius. Neural network modelsaptib shape
perception.Robotics and Autonomous Syste?fd:720-727, 2007.

M. Johnsson and C. Balkenius. Associating som reptatens of
haptic submodalities. |Rroceedings of TAROS 200Bdinburgh, UK,
2008.

Stefan Karlsson. Monocular depth from occluding edg&aster’s
thesis, Department of Mathematics, Lund Institute of Tedbay,
2004.

J. Morén. Emotion and Learning - A Computational Model of the
Amygdala Lund University Cognitive Studies, 2002.

Bradford Nichols, Bick Buttlar, and Jackie Proulx Fetr Pthreads
Programming O’Reilly, 1996.

LUCS haptic hand Il. Teagdin

