
LUCS Haptic Hand I
 

Magnus Johnsson

Dept. of Computer Science and Lund University Cognitive Science
Lund University, Sweden

Abstract

This paper describes a robotic hand, LUCS Haptic
Hand I, that has been built as a first step in a project
at LUCS aiming at studying haptic perception. In the
project, several robotic hands together with cognitive
computational models of the corresponding human neu-
rophysiological systems will be built. Grasping tests
with LUCS Haptic Hand I were done with different ob-
jects, and the signal patterns from the sensors were stud-
ied and analyzed. The results suggest that LUCS Haptic
Hand I provides signal patterns that are possible to cat-
egorize. It should be possible to base the categorization
on certain properties that can be derived from the raw
data.

1 Introduction

The ability to identify materials and objects with the
aid of touch in our hands is an ability that we often
take for granted, and normally we hardly think about it.
But to be possible, this ability demands a hand with a
very sophisticated ability to manipulate grasped objects,
and receptors for several submodalities, especially cu-
taneous and proprioceptive mechanoreceptors. In addi-
tion, neuro-physiological systems are needed, that ac-
tively can choose a way to manipulate the object in
question in a beneficial way and then control the exe-
cution of these manipulations, while at the same time
receiving and categorizing sensory data.

One way to learn more about how such an ability
works and to find applications for that knowledge by
reversed engineering, is to try to build an artificial sys-
tem capable of what have been mentioned above, i.e.
capable of haptic object categorization. Such a system
should take the human hand and brain as a prototype.

To build such a system is our ambition.

There are several reasons why it should be interesting
to build a system capable of haptic object categorization
modeled on the corresponding human system. From
a pure scientific viewpoint it is interesting because the
model can constitute support for the cognitive and neu-
roscientific theories that it is founded on. It might also
provide new insights into the modeled neurophysiolog-
ical systems. From an applications perspective it is in-
teresting because it might provide new knowledge about
robotic haptics and artificial intelligence. Since the sys-
tem will be founded in the workings of the correspond-
ing human systems, it might also be used to simulate
the effects of, for example, nerve injuries between the
hand and the brain and the cortical reorganization that
follow these kinds of injuries (Johnsson, 2004).

So far robotic haptics is not a very well researched
area, and that means only a few haptic perception sys-
tems have been built. One example is a system capable
of haptic object classification (Dario et al., 2000). This
system has obtained object classification with the aid of
touch and vision, by replicating the human ability to in-
tegration of sensory data from different modalities into
one low-level perception, so that object recognition can
be obtained without any interference from high-level
cognitive processes. The system consists of two lev-
els of neural networks: the first level for feature extrac-
tion from the tactile and dynamic signals, and the other,
that is fed with output from the previous level of neural
networks, output from a visual recognition module and
with direct thermal sensor output, aims at recognition.

Two antropomorfa robotic manipulation platforms
(Laschi et al., 2002; Dario et al., 2003) based on neuro-
physiological models of grasping includes both a visual
and a haptic sensory system. These robotic human-like
manipulation systems consist of a robotic arm with a
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hand and a head with a binocular vision system. The
hands are equipped with tactile sensors Software mod-
ules implement basic human-like sensory data process-
ing. Preliminary experiments have yielded encouraging
results.

DeLaurentis and Mavroidis (2000) have designed a
prototype of a five-finger biomechanical robotic hand
that imitates the shape of the human hand. Each finger
is actuated by four shape memory alloy artificial muscle
wires, which are connected to both sides of the superior
and the inferior part of the body of the finger.

Sugiuchi, Hasegawa, Watanabe and Nomoto (2000)
have developed a robotic hand together with a control
system. The robotic hand has five fingers and 22 de-
grees of freedom. Each finger has four joints, each ac-
tuated by a RC servo. The surface of the robotic hand
is covered with a distributed touch sensor that has more
than 500 points of measurement. The system is able to
control the position, the orientation, the velocity, and
the force at multiple points of the robotic hand simulta-
neously. The distributed touch sensor consists of 64 x
16 lines of electrodes placed on both sides of a pressure
sensi-tive rubber-sheet. The whole surface is scanned
within 20 ms, which yields the pressure on each point
with a resolution of 12 bits.

As a beginning to our project to explore haptic per-
ception and build a system capable of it, we have built
LUCS haptic hand I, which is a very simple robotic
hand equipped with push sensors.

At least three fingers, each with three degrees of free-
dom are needed to enable a robotic hand to manipulate
an arbitrarily shaped object so that it can be relocated in
a arbitrary and appropriate way, without any rolling or
slipping contacts (Bicchi, 2000). This means that Lucs
Haptic Hand I wont be capable of very sophisticated
manipulation, but this is not the aim of it. Mechanisms
for hand movements and dexterous finger maneuver are
complicated aspects of robotic hands. For example the
grasp has to be analyzed and an optimal set of contact
forces have to be selected. In practice, this is done by
the formulation of the dexterous manipulation problem
(Okamura, Smaby & Cutkosky, 2000). The solution of
these problems we postpone until later versions of hap-
tic systems.

The aim of building LUCS haptic hand I and to,
later, implement computational brain models to enable
a more simplistic ability to haptic object categoriza-
tion is to get experiences that will enable us to build
a more advanced and elaborate version later. Therefore
the technical level of LUCS haptic hand I has been kept

elementary. However, the robotic hand has been built
with the aim to generate tactile signal patterns, while
grasping objects that are differentiated enough to en-
able categorization with respect to, at least, hard-ness
and size and possibly even shape.

In humans, what kinds of procedures are used de-
pend on the age. The haptic procedures used by young
children are simpler than those used by adults. In fact,
already a few weak old fetuses are sensitive to tactile
stimulation, and newborns respond differently depen-
dent on how elastic or stiff an object is (Streri, 2003).
A 3-4 year old child has an exploratory procedure for
shape discrimination, but it is not optimal (Hatwell,
2003). The hand namely stays immobile on the ob-
ject. Such static contact provides, besides information
on temperature, also approximate information on shape,
texture, size, and hardness. At adulthood, on the other
hand, the explorative procedures have become closer to
optimality (Hatwell, 2003).

Adults use several haptic procedures. The choice of
procedure depends on the kind of property explored.
When texture is explored of, lateral motion is used, and
indeed, movements seem to be necessary for the percep-
tion of texture (Gentaz & Hatwell, 2003). Unsupported
holding is used for the estimation of weight, and pres-
sure to explore the hardness of the material (Hatwell,
2003). By the aid of contour following, more precise in-
formation on shape and size is provided. Unsupported
holding is used for the estimation of weight (Hatwell,
2003). In weight estimation, it is first and foremost the
arms and shoulders that are most sensitive, while the
fingers also have some sensitivity to gravitational con-
straints (Hatwell, 2003).

In haptic object identification it is not only informa-
tion extracted from stimulus that influence the identi-
fication, but also expectations based on the context or
previous experiences, i.e. there is top-down processing
involved (Klatzky & Lederman, 2003).

The rest of this report will consider the technical con-
struction of LUCS haptic hand I, and an analysis of the
signal patterns received from it while it is grasping ob-
jects.

2 LUCS Haptic Hand I

LUCS haptic hand I (Fig. 1) has three fingers and one
of them, the thumb, is moveable with one degree of
freedom. The fingers, that are of a plastic material, are
straight and rigid and of a rectangular shape. The two
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Figure 1: The LUCS haptic hand I, while grasp-
ing a clementine. The robotic hand has three fingers
equipped with three pressure sensors each. Only the
thumb is moveable with one degree of freedom. The
thumb is mounted on a metal joint, connected to a RC
servo. As an interface to the computer, we have used a
Basic Stamp II together with a mini SSC II.

fixed fingers are mounted so that their superior sides
are slanted inwards. The thumb is mounted on a metal
joint that in turn is mounted on a RC servo. The point
of using the metal joint is, besides transmitting torque
from the RC servo to the thumb, to stabilize sideway
movements, so that the movement of the thumb be-
comes more accurate. When the thumb moves to close
the robotic hand, it ends up right between the two fixed
fingers.

Each finger is equipped with three pressure sensors,
attached to the fingers with equal distance in between,
i.e. one sensor is placed at the outermost part of the
finger, one sensor at the innermost part, and one in be-
tween. To keep track of the signals, the sensors have
been numbered, and (Fig. 2) shows the correspondence
between the sensors number and the sensors. There are
tiny plastic plates mounted on top of the pressure sen-
sors. The size of the plastic plates is such that they fit
within the borders of the pressure sensors. These plas-
tic plates are necessary to distribute pressure over the
sensors.

Every pressure sensor is, together with a capacitor
and a resistor, part of a RC-time circuit (Fig. 3), which
generates a pulse with a frequency that depends on the
pressure applied to the pressure sensor. The pressure

S9        S8        S7

S1        S2        S3

S4        S5        S6

Figure 2: The figure shows what sensor number corre-
spond to what sensor on LUCS haptic hand I. The view
of the open robotic hand is to be considered as seen
from above.

220 ohm

5 V

0.1 uF

Push Sensor

Figure 3: A RCTime circuit.

sensors have a resistance that varies with the pressure
applied, so the time for the capacitor to become fully
loaded is therefore dependent on the pressure on the
sensor.

LUCS haptic hand I communicates with the com-
puter via the serial port, and as an interface a Basic
Stamp II is used. The Basic Stamp executes a loop
that in every iteration reads a message, coming from
the computer, about whether the position of the thumb
is going to be changed, and to what position. If the
position is going to be changed, then a signal is sent to
another board, a mini SSC II, which generates a pulse to
the RC servo which then moves to the desired position.
In every iteration of the loop the frequency of each RC-
time circuit is also read and sent to the computer. (Fig.
4) shows the circuits involved in the communication be-
tween Lucs Haptic Hand I and the computer.

All software for LUCS haptic hand I is developed and
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Figure 4: The circuits involved in the communication
between Lucs Haptic Hand I and the computer.

will continue to be developed in the future as Ikaros
modules (Balkenius & Morén, 2004). Ikaros provides
a kernel and an infrastructure for computer simulations
of the brain and for robot control.

The current software consists of an Ikaros module
that handles the communication on the serial port. In
addition it orders a grasping movement of the robotic
hand and receives information about the status of the
sensors. As output a matrix is generated that represents
the status of the sensors at different discrete points in
time during the grasping movement.

3 Grasping Tests

We have tested LUCS haptic hand I by letting it grasp
a number of objects (Table 1). These objects were se-
lected as test objects, because in preliminary tests the
ability of the robotic hand to detect arbitrary shapes
turned out to be severely limited. Different kinds of
balls turned out to be especially suitable, and therefore
such balls were selected to allow studies of the changes
to the signal patterns due to hardness and size. To get a
comprehension of the impact of the shape on the signal
patterns, we also used two different cubes as test object.
Both cubes are made of foam rubber, because other ob-
jects than those with a spherical shape were hard to de-
tect if they were not of a soft material.

LUCS haptic hand I grasped each object, described
in Table 1, 30 times. In each grasping test the object
was placed in a similar way in the robotic hand.

The results of the grasping tests are presented in the
form of diagrams showing the mean value of the sig-
nals, during the grasping, from the 30 grasping tests
with an object together with the variance. One diagram

for each sensor for every object was drawn and ana-
lyzed. The diagrams are included in the appendix.

4 Results

Only sensor 1 reacted when the small cube was grasped,
and the maximal strength of the signal was approxi-
mately 1400.

In the case of the big cube, only sensor 7 reacted, and
the maximal strength of the signal was approximately
1600. We can also see that the signal starts earlier and
last longer with this cube, than in the case of the smaller
one, i.e. the formation in the diagram is broader.

The small ball gave only a reaction of sensor 1, and
the maximal strength of the signal was around 3500. As
can be seen in the diagram, there was a reaction of sen-
sor 1 during the whole grasping movement, even when
the thumb wasnt pushing against the boll. This is prob-
ably due to that the weight of the ball might have been
applied directly to the sensor in the case of this object.

In the case of big ball 1 there were reactions of sensor
2 with a maximal signal of approximately 3500, and
sensor 5 with a maximal signal of approximately 4400.
As the case was with the cubes, the signal curve starts
earlier and lasts a little bit longer in this case than in the
case of the small ball.

The big ball 2 gave reactions of sensor 2 with a max-
imal signal of approximately 2600, of sensor 5 with a
maximal signal of approximately 2250, and of sensor 7
with a maximal signal of approximately 4400. The sig-
nal curves for sensor 2 and 5 are of approximately the
same width as those for big ball 1, but the signals are
weaker in this case, compared to the case of big ball 1.

Only sensor 1 reacted in the case of the golf ball with
a maximal strength of the signal of approximately 3700.
The width of the signal curve is approximately the same
as in the case of the small ball, but the signal was a little
bit stronger in this case.

5 Discussion

In the diagrams for the different objects, that have been
tested, it can be seen that the signal patterns from LUCS
haptic hand I, are differentiable, to some extent, accord-
ing to size, shape, and degree of hardness.

The difference in size becomes clear, since the signal
patterns, for both balls and cubes, show a signal that
starts earlier, lasts longer, and stops a little later during
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Table 1: The objects tested by LUCS Haptic Hand I
Object Size Hardness Material Sensors

Small Cube Side 37 mm Soft Foam Rubber S1
Big Cube Side 55 mm Soft Foam Rubber S7
Small Ball Circumf. 130 mm Rather Hard Plastic S1
Big Ball 1 Circumf. 196 mm Medium Hardness Rubber S2, S5
Big Ball 2 Circumf. 224 mm Rather Soft Hard Foam Rubber S2, S5, S6
Golf Ball Circumf. 123 mm Hard Golf Ball S1

the grasping movement in the case of a bigger object.
In the case of balls, it also seems that more sensors are
activated if the ball is bigger.

Difference in form, i.e. whether the object is a ball
or a cube, also possibly becomes clear from the signal
patterns. In the diagrams the curves for the balls seem
to have a steeper inclination in their left side, compared
to the curves for the cubes.

The degree of hardness is possibly also clear from the
signal patterns. This is because the height of the curve
seems to indicate a harder material of the object. For
example this can be seen by comparing the diagrams
for the sensor 2 and for the sensor 5 for the big ball 1
and the big ball 2. In these diagrams one can see that the
curves are higher for big ball 1 than for big ball 2. This
tendency can also be seen if the diagrams for sensor 1
for the small ball and for the golf ball are compared,
where the little harder golf ball also has a little higher
curve. However, this should need further investigations.

One observation that can be done in the diagrams
is that the sensors seem to react somewhat asymmetri-
cally, i.e. the sensors on the left finger (sensors 1, 2, 3)
seems to react more than the sensors on the right fixed
finger (sensors 4, 5, 6). This is probably due to that
the angle between the fixed left finger and the thumb
is slightly different from the angle between the right
fixed finger and the thumb, because of small imperfec-
tions in the physical construction. The push sensors and
the tiny plastic plates mounted upon them might also be
mounted with a slight asymmetry.

The results suggest that it should be possible to cate-
gorize the objects according to different properties of
the signal patterns, i.e. properties like width, slope,
height, and so on of the diagrams. This should be
more efficient and also more interesting compared to
a categorization solely based on the raw data from the
sensors. Implementing a mechanism that first extracts
these properties from the raw data can do this.

Another lesson from the tests with LUCS Haptic

Hand I is that the next robotic hand we build should
be equipped with jointed fingers that closes properly
around the grasped object. This will allow a larger
amount of sensors to become activated during the grasp
of an object, and it will allow the whole capacity of the
sensor equipment to be used.
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Figure 5: Small cube test data.
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Figure 6: Big cube test data.
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Figure 7: Small ball test data.
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Figure 8: Big ball 1 test data.
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Figure 9: Big ball 2 test data.
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Figure 10: Golf ball test data.
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