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Abstract

We have experimented with proprioception in
a bio-inspired self-organizing haptic system. To
this end a 12 d.o.f. anthropomorphic robot hand
with proprioceptive sensors was developed. The
system uses a self-organizing map for the mapping
of the explored objects. In our experiments the
system was trained and tested with 10 different
objects of different sizes from two different shape
categories. To estimate the generalization ability
the system was also tested with 6 new objects.
The system showed good performance with the
objects from both the training set as well as in
the generalization experiment. In both cases the
system was able to discriminate the shape, the
size and to some extent the individual objects.

1. Introduction

Haptic perception, i.e. active tactile perception, is of
outmost importance in the field of robotics since a well
performing robot has to interact with its environments.
However, haptic perception is also important in support-
ing and sometimes also substituting the visual modality
during the recognition of objects. Like humans, robots
must be able to perceive shape and size as well as to
discriminate between individual objects by haptic explo-
ration.

The modelling of haptic perception as well as the
implementation of haptic perception in robots are two
neglected areas of research. Robot hand research has
mainly focused on grasping and object manipulation
(Dario et al, 2003; DeLaurentis & Mavroidis, 2000; Rhee
et al, 2004; Sugiuchi et al, 2000), and many models of
hand control have been focused on the motor aspect
rather than on haptic perception (Arbib et al, 2000;
Fagg & Arbib, 1998), although there are some exceptions
(Allen & Michelman, 1990; Caselli et al, 1994; Dario et
al, 2000; Erkmen et al, 1999; Heidemann & Schöpfer,
2004; Hosoda et al, 2006; Jockusch et al, 1997; Natale
& Torres-Jara, 2006; Petriu et al, 2004; Stansfield, 1991;
Taddeucci et al, 1997).

Our previous research on haptic perception has re-
sulted in the design and implementation of a number of

versions of two different working haptic systems. The
first system (Johnsson, 2004; Johnsson et al, 2005a;
Johnsson et al, 2005b; Johnsson & Balkenius, 2006a)
was a system for haptic size perception. It used a sim-
ple three-fingered robot hand, the LUCS Haptic Hand
I, with the thumb as the only movable part. The LUCS
Haptic Hand I was equipped with 9 piezo electric tactile
sensors. This system used self-organizing maps, SOMs,
(Kohonen, 1988) and a neural network with leaky inte-
grators and it successfully learned to categorize a test
set of spheres and cubes according to size.

The second system (Johnsson & Balkenius, 2006b;
Johnsson & Balkenius, 2006c; Johnsson & Balkenius,
2006d; Johnsson & Balkenius, 2007) was a system for
haptic shape perception and used a three-fingered 8 dof
robot hand, the LUCS Haptic Hand II, equipped with a
wrist for horizontal rotation and a mechanism for vertical
re-positioning. This robot hand was equipped with 45
piezo electric tactile sensors. This system used active ex-
plorations of the objects by several grasps with the robot
hand to gather tactile information. The LUCS Haptic
Hand II was not equipped with any proprioceptive sen-
sors. Proprioception is the perception of the relative po-
sitions of different body parts. Suitable proprioceptive
sensors are sensors that register joint angles. Instead
of proprioceptive sensors the system used the position-
ing commands to the actuators, which is less accurate
than real proprioceptive sensors since the wanted posi-
tions are not necessarily the same as the actual positions.
Depending on the version of the system, either tensor
product (outer product) operations or a novel neural
network, the Tensor Multiple Peak SOM, T-MPSOM,
(Johnsson & Balkenius, 2006c; Johnsson & Balkenius,
2006d, Johnsson & Balkenius, 2007) was used to code
the tactile information in a useful way and a SOM for
the categorization. The system successfully learned to
discriminate between different shapes as well as between
different objects within a shape category when tested
with a set of spheres, blocks and cylinders.

The current paper explores a somewhat different ap-
proach which is based on proprioception. Using the po-
sition of each joint as the only input, we have designed
an anthropomorphic robot hand, which can discriminate



objects and categorize them according to shape and size.

2. LUCS Haptic Hand III

The LUCS Haptic Hand III is a five fingered 12 dof
anthropomorphic robot hand equipped with 11 pro-
prioceptive sensors (Fig. 1). The robot hand has a
thumb consisting of two phalanges whereas the other
fingers have three phalanges. The thumb can be sep-
arately flexed/extended in both the proximal and the
distal joints and adducted/abducted. The other fin-
gers can be separately flexed/extended in their proxi-
mal joints whereas the middle and the distal joints are
flexed/extended together. All this is similar to the hu-
man hand. The wrist can also be flexed/extended as the
wrist of a human hand. The phalanges are made of plas-
tic pipe segments and the force transmission from the ac-
tuators, which are located in the forearm, are handled by
tendons inside the phalanges in a similar way to the ten-
dons of a human hand. All fingers, except the thumb, are
mounted directly on the palm. The thumb is mounted
on a RC servo, which enables the adduction/abduction.
The RC servo is mounted on the proximal part of the
palm, similar to the site of the thumb muscles in a hu-
man hand. The actuators of the fingers and the wrist are
located in the forearm. This is also similar to the mus-
cles that actuate the fingers of a human hand. The hand
is actuated by in total 12 RC servos, and to get propri-
oceptive sensors the internal potentiometers in the RC
servos, except the RC servo that actuates the wrist, have
been included in the sensory circuit. The resistances of
these potentiometers are proportional to the angle of the
different joints.

The software for the LUCS haptic hand III is de-
veloped in C++ and runs within the Ikaros system
(Balkenius, & Morén, 2003; Balkenius et al, 2007;
http://www.ikaros-project.org/). Ikaros provides an in-
frastructure for computer simulations of the brain and
for robot control.

Movies and additional pictures of the LUCS Hap-
tic Hand III can be found on the web site
http://www.lucs.lu.se/People/Magnus.Johnsson.

3. A Proprioception Based Model

3.1 Model Design

The single grasp model consists of the LUCS Haptic
Hand III, sensory and motor drivers, a self-organizing
map, SOM, (Kohonen, 1988), and a commander pro-
gram that executes the grasping movements. The sen-
sory driver scans the proprioceptive sensors when re-
quested to do so by the commander program, while the
motor driver translate high level motor commands from
the commander to commands appropriate for the robot
hands servo controller board. When the commander exe-

Figure 1: The LUCS Haptic Hand III while holding a screw

driver, in open position seen in a front view and in a side

view. Some of the actuators in the forearm can also be seen

in the side view. The 12-dof robot hand has five fingers, is

of the same size as a human hand and all its parts have ap-

proximately the same proportions as their counterparts in a

human hand. Each finger can be separately flexed/extended

in the proximal joint, whereas the medial and distal joints are

flexed/extended together as real human fingers. As a human

hand the thumb has only a proximal and a distal phalang.

These can also be separately flexed/extended. In addition

the thumb can also be adducted/abducted in a way similar to

the human thumb. The wrist is capable of flexion/extension.

The actuators of the LUCS Haptic Hand III are controlled

via a SSC-32 (Lynxmotion Inc.). The proprioceptive sen-

sors are scanned with a MAX396CPI multiplexor chip and

digitalized using a NiDaq 6008 (National Instruments). The

NiDaq 6008 converts multiple analog input signals to digital

signals, which are conveyed to the computer via a USB-port.

The robot hand is equipped with two multiplexor chips, which

means it is prepared for 21 additional sensors.
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Figure 2: Schematic depiction of the single grasp model. The

commander program executes the grasps by sending high-level

motor commands to the motor driver, which translates and

conveys the information to the servo controller board of the

robot hand. When the robot hand has become fully closed the

commander program request a scanning of the registers of the

11 proprioceptive sensors of the robot hand. The sensory in-

formation is conveyed as a vector to the self-organizing map.

cutes a grasp the robot hand is closed around the object.
When the robot hand is fully closed the sensory driver
samples the registrations from the 11 proprioceptive sen-
sors and conveys the information as an eleven-elements
vector to the SOM, which is activated and adapts its
weights if the model is in the learning phase.

The self-organizing map is a 225 neuron dot product
SOM with plane topology, which uses softmax activation
with the softmax exponent equal to 10 (Bishop, 1995).
The use of softmax activation is a way to reinforce the
activation in the central part of the activated area and
attenuate the activation in the peripheral parts.

3.2 Grasping Tests

We have tested the single grasp model with 10 objects,
see Table 1 objects a-j. These objects are either cylinder
shaped or block shaped. There are five objects of each
shape category. All objects are sufficiently high to be of
a non-variable shape in those parts grasped by the robot
hand, e.g. a bottle used is grasped on the part of equal
diameter below the bottle neck.

During the grasping tests the test objects were placed
on a table with the open robot hand around them. If the
objects were block shaped we always placed the longest
side against the palmar side.

To simplify the testing procedure each object was
grasped 5 times by the robot hand, i.e. in total 50 grasps
were carried out, and the sensory information were writ-
ten to a file. Then the SOM were trained and tested
with this set of 30 samples. The training phase lasted for
2000 iterations, then the weight adaptation was turned
of and each sample was input to the SOM again and the
activation recorded.

3.3 Generalization Tests

We have also tested if the model is able to generalize its
knowledge to new objects, i.e. to objects not included
in the training set. To this end we used 6 new objects,
Table 1. 1-6, 3 cylinder shaped object and 3 block shaped
objects. The new objects were of variable sizes. The
fully trained model was fed by input from grasps of the
new objects under the same conditions as the objects in
the training set. Each object in the new set was grasped
once and the activity in the SOM was recorded.

3.4 Results and Discussion

The mapping of the test objects in the SOM is depicted
in fig. 3. In fig. 3A the mapping of individual grasps
have been grouped. Each group encloses the mapping of
grasps of a single test object. One grasp of the olive oil
bottle, one grasp of the tube and one grasp of the plas-
tic bottle 2 have been excluded from the grouping since
they are not mapped together with the other grasps of
the same object and they are also mapped in the wrong
shape category (they are mapped at a proper place when
considering size though). As can be seen in fig 3A the
model is able to discriminate between individual objects,
although not perfectly.

The SOM seems to be organized according to shape,
as can be seen in fig. 3B. Four groups of objects can
be distinguished in the map. The same three objects as
in fig. 3A have been excluded, and for the same rea-
son. One of the groups encompasses large block shapes,
one group encompasses small block shapes, one group
encompasses large cylindrical shapes, and one group en-
compasses small cylindrical shapes. Thus the model
seems to be able to discriminate between shapes, and
it also groups the shapes according to whether they are
bigger or smaller.

The SOM also seems to have become organized in a
way so that the mapping of the test objects are ordered
in a clockwise manner according to size from smaller to
larger. It seems as the extension of the surface turned
against the palmar side of the hand during grasping has
precedence when the SOM organizes according to size
and the extension of this surface is also what we con-
sider when we say that the SOM is ordered according
to size. That the surface turned at the palmar side has
precedence is also what would be expected since this



Table 1: The 16 objects used in the experiments with the single grasp model. The objects a-j were used both for training and

testing, whereas the objects 1-6 were used in the generalization test.

Label Object Shape Size (mm) Size (mm)
a Tube Cylinder Diameter = 58 -
b Beer Can Cylinder Diameter = 64 -
c Wood Block Block Length = 75 Width = 47
d Wine Bottle Cylinder Diameter = 70 -
e Plastic Block 1 Block Length = 63 Width = 63
f Plastic Bottle 2 Cylinder Diameter = 72 -
g Olive Oil Bottle Block Length = 65 Width = 65
h Plastic Bottle 1 Cylinder Diameter = 80 -
i Plastic Block 2 Block Length = 80 Width = 63
j Coffee Package Block Length = 97 Width = 67
1 Card Board Package 1 Block Length = 77 Width = 66
2 Card Board Package 2 Block Length = 84 Width = 62
3 Card Board Package 3 Block Length = 95 Width = 62
4 Spice Bottle Cylinder Diameter = 57 -
5 Treacle Bottle Cylinder Diameter = 63 -
6 Plastic Bottle 3 Cylinder Diameter = 79 -

information should in some way be coded by the propri-
oceptive information from all the fingers but the thumb,
whereas the perpendicular surface (in the case of a block
shape) is only coded by the proprioceptive information
from the thumb. There is one exception to the size order-
ing in the SOM though, namely plastic bottle 1, as can
be seen in fig. 3C. However, within a shape category
the test objects are mapped clockwise from smaller to
larger according to size without exceptions. This could
be interpreted as a precedence of shape over size when
the SOM is organized, i.e. the shape information has a
heavier influence on the organization than the size infor-
mation.

The results are interesting because they reveal that
the proprioceptive information encompasses information
about both the shape and the size of the grasped objects,
and in addition information that enables discrimination
of the individual objects to some extent.

The result of the generalization experiment is depicted
in fig. 3D. As can be seen each of the objects is mapped
so that it can be identified as the most similar object in
the training set, i.e. if the test object is block shaped
then it is mapped in the same area as the most similar
block shaped object in the training set, and if the test
object is cylinder shaped then it is mapped in the same
area as the most similar cylinder shaped object in the
training set. This also means that all test objects are
mapped so that they are ordered according to size in the
same way as the objects in the training set, and that
they are correctly mapped according to shape. Thus the
models ability for generalization is total for the tested
objects.

4. Conclusions

We have experimented with a system for haptic percep-
tion based on our novel anthropomorphic robot hand,
the LUCS Haptic Hand III. The system uses a novel
approach, i.e. it only uses proprioceptive information,
which resulted in a very well performing haptic system.
In comparison with our earlier system for haptic shape
perception (Johnsson & Balkenius, 2006b; Johnsson &
Balkenius, 2006c; Johnsson & Balkenius, 2006d; Johns-
son & Balkenius, 2007), the current system has turned
out to be much more able to correctly categorize ob-
jects according to shape in a much wider size range, and
this is done with a less computationally expensive model.
The current model was also able to map the sizes of the
objects in an ordered fashion, and to discriminate be-
tween objects as long as they were not too similar. A
human would probably have a similar problem if she was
not able to detect the material properties of the objects
or expressed differently, if all object were of exactly the
same material and weight. We also successfully tested
the systems ability to generalize its learning to 6 novel
objects.

It would be interesting to compare our systems to self-
organizing systems developed by others. Heidemann and
Schöpfer (2004) describes a haptic system, which consists
of a plate with a touch sensitive array mounted on a
robot arm. The system explores an object by sequences
of contacts and feeds a self-organizing neural architecture
with input. The system was able to learn to recognize 7
different objects when tested.

Natale and Torres-Jara (2006) describes a system con-
sisting of an upper body humanoid robot with a hand
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Figure 3: The mapping of the test objects. The characters a-j and the numbers 1-6 refer to the objects in table 1. Each square

represents a neuron in the SOM, which consists of 15 × 15 = 225 neurons. The presence of a letter in a square indicates a

centre of activation in the SOM for the corresponding object. The occurrence of a certain letter in more than one square means

that the corresponding object has different centres of activation during different grasps of the same object, i.e. all letters of

a certain kind represents all occurring centres of activation in the SOM when the system was tested with the corresponding

object. A: The mapping of the individual objects. The mappings of the samples of each training object have been encircled.

The mappings of three samples (of the 50 training samples) were excluded when we encircled the areas for each of the 10

training objects (they are included as individual mappings in the figure, though). The reason to their exclusion was that the

mappings of these samples deviated a lot from the mappings of the other samples of the same training object, i.e. they are

considered outliers. B: Four groups of objects can be distinguished in the map. The same three objects as in A were excluded

when we encircled the four areas and for a similar reason. One group encompasses large block shapes, one group encompasses

small block shapes, one group encompasses large cylindrical shapes, and one group encompasses small cylindrical shapes. C:

The mapping of the test objects are ordered clockwise from small to large according to size with one exception, plastic bottle

1. Within a shape category the test objects are mapped clockwise from small to large according to size without exception. D:

In the generalization experiment the test objects are mapped so that they can be identified with the most similar object in the

training set. The encircled areas are the same as those in fig. 3A. The test objects are also ordered according to size in the

same way as the objects in the training set, and they are correctly mapped according to shape.



equipped with dome-like tactile sensors, which are sen-
sitive to pressure from all directions, as well as posi-
tion sensors (proprioception). The system also includes
a camera together with a visual system for coarse lo-
calization of the object. The information gathered by
the system was used as input to a SOM. When evalu-
ated with 4 different objects, a bottle, a box and two
cups these objects were mapped differently. However,
the cups could not be distinguished from each other.

When compared with the two systems described above
our system stands out in that it is able to categorize the
objects according to shape, order them according to size
as well a recognize individual objects to a large extent.

Because of the successful approach with using proprio-
ceptive information as a base for haptic shape perception
as well as size perception we will in the nearest future
continue our research in haptic perception with the fol-
lowing tasks: Try to bring the proprioceptive system
to its absolute limits, e.g. by exploiting the possibility
of the LUCS Haptic Hand III to carry out a more ac-
tive exploration than simply grasping the objects in only
one way. This can be done by adducting/abducting the
thumb and by flexing/extending the wrist differently in
different grasps; Investigate texture and heat perception
and maybe also the perception of hardness and integrate
these submodalities to the system to get a system that
is able to detect material properties and discriminate
between equally shaped and sized objects of different
materials.

At a later stage we will study the interaction be-
tween haptics and vision. This would be interesting be-
cause these modalities interact to a considerable extent
(Castiello, 2005). Another issue is to investigate haptic
manipulation systems, i.e. systems for manipulation of
objects that, in a very bio-inspired way, relies heavily on
the haptic feedback received during the manipulation for
their performance.
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